Publication / Advanced Microfluidics for Single Cell-Based Cancer Research
Cancer remains one of the leading causes of mortality worldwide, accounting for ≈10 million deaths annually. Critically, it is metastasis and not the primary tumour that causes most of these deaths. Understanding the mechanisms behind cancer dissemination and therapy resistance is thus a pressing challenge. Traditional bulk tissue analyses have failed to capture the full spectrum of intra-tumour heterogeneity and the dynamic interactions within the tumour microenvironment. Studying cancer at the single-cell level allows unravelling the roles of rare subpopulations, cell–cell interactions, and spatial dynamics that govern tumour evolution, metastasis, and immune evasion. This review explores how recent advances in microfluidic technologies are transforming ability to model and study cancer at the single-cell level. Cutting-edge platforms are highlighted, including droplet microfluidics, single cell-derived spheroids, and tumour-chips, that enable physiologically relevant 3D cancer models. By integrating immune components, biosensing, and patient-derived materials, these platforms hold promise for advancing drug screening, immunotherapy assessment, and personalised medicine. It is concluded by identifying key challenges and priorities for future work, which should focus on increasing model complexity, reproducibility, and integration of spatiotemporal multiomics to better dissect tumour heterogeneity and accelerate clinical translation.
Read the full article here.